Package: cosa (via r-universe)

September 6, 2024

Type Package

Title Bound Constrained Optimal Sample Size Allocation

Version 2.1.0

Date 2021-05-25

Description Implements bound constrained optimal sample size allocation (BCOSSA) framework described in Bulus & Dong (2021) <doi:10.1080/00220973.2019.1636197> for power analysis of multilevel regression discontinuity designs (MRDDs) and multilevel randomized trials (MRTs) with continuous outcomes. Minimum detectable effect size (MDES) and power computations for MRDDs allow polynomial functional form specification for the score variable (with or without interaction with the treatment indicator) (Bulus, in press).

Imports nloptr(>= 1.0.4), msm(>= 1.6.7)

Suggests knitr, rmarkdown

VignetteBuilder knitr

License GPL (>= 3)

NeedsCompilation no

Repository https://metinbulus.r-universe.dev

RemoteUrl https://github.com/metinbulus/cosa

RemoteRef HEAD

RemoteSha ff7ccbf1962b0171515712a417ba838f33c5065c

Contents

cosa-package	2
bcrd3r2	3
bcrd4r2	6
bcrd4r3	9
bird2	12
bird3	14

cosa-package

bird4	17
cosa-deprecated	
crd2	
crd3	24
crd4	
inspect.score	
ird	
moments	
plot	
Vectorize BCOSSA	36
	38

Index

cosa-package

Bound Constrained Optimal Design of MRDDs and MRTs

Description

Bound Constrained Optimal Sample Size Allocation (BCOSSA) functions are designed to optimize sample sizes at one or more levels subject to budget, statistical power, or effect size constraints. BCOSSA can be found in the following forms; (i) under budgetary constraints given marginal costs per unit while minimizing sampling variance of the treatment effect (or, alternatively, while maximizing power rate), (ii) under statistical power or effect size (ES) constraints while minimizing the total cost, and (iii) under sample size constraints for one or more levels along with (i) or (ii). Specifying rhots = 0 or order = 0 produces results equivalent to corresponding random assignment designs, which means there is no relationship between the treatment [random] and the score variable. Therefore, BCOSSA functions also allow optimization of treatment group sampling rate (p) under unequal marginal costs when primary constraint is placed on the total cost. Different starting values and algorithms may produce different results when marginal cost information is not provided and sample sizes at two or more levels and p are optimized. In such cases, experimenting different starting values and/or comparing several algorithms may faciliate decisions regarding sample sizes and p.

Designs available in the **cosa** package:

Design	Total Levels	Treatment Level	Top Level
ird	1	1	random
bird2	2	1	random
bird2f1	2	1	fixed
bird3	3	1	random
bird4	4	1	random
crd2	2	2	random
bcrd3f2	3	2	fixed
bcrd3r2	3	2	random
bcrd4r2	4	2	random
crd3	3	3	random
bcrd4f3	4	3	fixed
bcrd4r3	4	3	random

crd4 4 random

ird: individual-level regression discontinuity. bird: blocked individual-level regression discontinuity. crd: cluster-level regression discontinuity. bcrd: blocked cluster-level regression discontinuity.

Design parameters follow a sequential order. Numbers at the end of a sequential parameter refers to the corresponding level. For example rho2 is the proportion of variance in the outcome between level 2 units, rho3 is the proportion of variance in the outcome between level 3 units. Similarly, r21 is the proportion of the variance in the outcome explained by level 1 covariates, r22 is the proportion of the variance in the outcome explained by level 2 covariates and so on. Similiar naming conventions applies to other design parameters.

bcrd3r2

Blocked (Random) Cluster-level Regression Discontinuity (Three-level Design, Discontinuity at Level 2)

Description

Use mdes.bcrd3r2() to calculate minimum detectable effect size, power.bcrd3r2() to calculate statistical power, and cosa.bcrd3r2() for bound constrained optimal sample size allocation (BCOSSA).

```
mdes.bcrd3r2(score = NULL, dists = "normal", k1 = -6, k2 = 6,
             order = 1, interaction = FALSE,
             treat.lower = TRUE, cutoff = 0, p = NULL,
             power = .80, alpha = .05, two.tailed = TRUE, df = n_3 - g_3 - 1,
             rho2, rho3, omega3, r21 = 0, r22 = 0, r2t3 = 0, g3 = 0,
             rate.tp = 1, rate.cc = 0, n1, n2, n3)
power.bcrd3r2(score = NULL, dists = "normal", k1 = -6, k2 = 6,
              order = 1, interaction = FALSE,
              treat.lower = TRUE, cutoff = 0, p = NULL,
              es = .25, alpha = .05, two.tailed = TRUE, df = n3 - g3 - 1,
              rho2, rho3, omega3, r21 = 0, r22 = 0, r2t3 = 0, g3 = 0,
              rate.tp = 1, rate.cc = 0, n1, n2, n3)
cosa.bcrd3r2(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
             order = 1, interaction = FALSE,
             treat.lower = TRUE, cutoff = 0, p = NULL,
             cn1 = 0, cn2 = 0, cn3 = 0, cost = NULL,
             n1 = NULL, n2 = NULL, n3 = NULL, n0 = c(10, 3, 100), p0 = .499,
             constrain = "power", round = TRUE, max.power = FALSE,
             local.solver = c("LBFGS", "SLSQP"),
             power = .80, es = .25, alpha = .05, two.tailed = TRUE,
             rho2, rho3, omega3, g3 = 0, r21 = 0, r22 = 0, r2t3 = 0)
```

-	
score	vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $k1 = -6$ and $k2 = 6$.
k1	left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots = 0 or order = 0 .
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots = 0 or order = 0.
order	integer $>= 0$; order of polynomial functional form specification for the score variable.
interaction	logical; if TRUE polynomial specification interacts with the treatment variable.
rhots	obsolote; use order = 0 to obtain results equivalent to random assignment designs.
treat.lower	logical; if TRUE units below the cutoff are treated.
cutoff	decision threshold.
р	proportion of level 2 units in the treatment condition.
power	statistical power (1 - β).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
omega3	ratio of the treatment effect variance between level 3 units to the variance in the outcome between level 3 units.
g3	number of covariates at level 3.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
r2t3	proportion of treatment effect variance between level 3 units explained by level 3 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	number of level 3 units (blocks).
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. c(10, 5).

bcrd3r2

cn2	marginal costs per level 2 unit in treatment and control conditions (positional), e.g. c(50, 20).
cn3	marginal cost per level 3 unit.
cost	total cost or budget. Ignored when $constrain = "power"$ or $constrain = "es"$.
p0	starting value for p when rhots = 0 and p = NULL. Starting value is replaced with the average when p is constrained by bounds.
n0	vector of starting values for n1, n2, n3 (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
round	logical; TRUE for rounded BCOSSA solution.
max.power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".
local.solver	subset of c("LBFGS", "SLSQP")

Value

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	BCOSSA solution.
mdes	minimum detectable effect size and $(1 - \alpha)\%$ confidence limits.
power	statistical power (1 - β)

Examples

power.bcrd3r2(score.obj, es = 0.25, rho2 = .20, rho3 = .10, omega3 = .30, g3 = 0, r2t3 = 0, n1 = 50, n2 = 10, n3 = 10)

bcrd4r2

Blocked (Random) Cluster-level Regression Discontinuity (Four-level Design, Discontinuity at Level 2)

Description

Use mdes.bcrd4r2() to calculate minimum detectable effect size, power.bcrd4r2() to calculate statistical power, and use cosa.bcrd4r2() for bound constrained optimal sample size allocation (BCOSSA).

Usage

```
mdes.bcrd4r2(score = NULL, dists = "normal", k1 = -6, k2 = 6,
             order = 1, interaction = FALSE,
             treat.lower = TRUE, cutoff = 0, p = NULL,
             power = .80, alpha = .05, two.tailed = TRUE, df = n4 - g4 - 1,
             rho2, rho3, rho4, omega3, omega4,
             r21 = 0, r22 = 0, r2t3 = 0, r2t4 = 0, g4 = 0,
             rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
power.bcrd4r2(score = NULL, dists = "normal", k1 = -6, k2 = 6,
              order = 1, interaction = FALSE,
              treat.lower = TRUE, cutoff = 0, p = NULL,
              es = .25, alpha = .05, two.tailed = TRUE, df = n4 - g4 - 1,
              rho2, rho3, rho4, omega3, omega4,
              r21 = 0, r22 = 0, r2t3 = 0, r2t4 = 0, g4 = 0,
              rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
cosa.bcrd4r2(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
             order = 1, interaction = FALSE,
             treat.lower = TRUE, cutoff = 0, p = NULL,
             cn1 = 0, cn2 = 0, cn3 = 0, cn4 = 0, cost = NULL,
             n1 = NULL, n2 = NULL, n3 = NULL, n4 = NULL,
             n0 = c(10, 3, 100, 5 + g4), p0 = .499,
             constrain = "power", round = TRUE, max.power = FALSE,
             local.solver = c("LBFGS", "SLSQP"),
             power = .80, es = .25, alpha = .05, two.tailed = TRUE,
             rho2, rho3, rho4, omega3, omega4,
             g4 = 0, r21 = 0, r22 = 0, r2t3 = 0, r2t4 = 0)
```

Arguments

score vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function. dists character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with k1 = -6 and k2 = 6.

k1	left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when $rhots = 0$ or $order = 0$.
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when $rhots = 0$ or $order = 0$.
order	integer ≥ 0 ; order of polynomial functional form specification for the score variable.
interaction	logical; if TRUE polynomial specification interacts with the treatment variable.
rhots	obsolote; use order = 0 to obtain results equivalent to random assignment de- signs.
treat.lower	logical; if TRUE units below the cutoff are treated.
cutoff	decision threshold.
р	proportion of level 2 units in the treatment condition.
power	statistical power (1 - β).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
rho4	proportion of variance in the outcome between level 4 units (unconditional ICC4).
omega3	ratio of the treatment effect variance between level 3 units to the variance in the outcome between level 3 units.
omega4	ratio of the treatment effect variance between level 4 units to the variance in the outcome between level 4 units.
g4	number of covariates at level 4.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
r2t3	proportion of treatment effect variance between level 3 units explained by level 3 covariates.
r2t4	proportion of treatment effect variance between level 4 units explained by level 4 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	average number of level 3 units (blocks) per level 4 unit.
n4	number of level 4 units (blocks).
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. $c(10, 5)$.

cn2	marginal costs per level 2 unit in treatment and control conditions (positional), e.g. c(50, 20).
cn3	marginal cost per level 3 unit.
cn4	marginal cost per level 4 unit.
cost	total cost or budget. Ignored when $constrain = "power"$ or $constrain = "es"$.
p0	starting value for p when rhots = 0 and p = NULL. Starting value is replaced with the average when p is constrained by bounds.
nØ	vector of starting values for n1, n2, n3, n4 (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
round	logical; TRUE for rounded BCOSSA solution.
max.power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".
local.solver	subset of c("LBFGS", "SLSQP").

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	BCOSSA solution.
mdes	minimum detectable effect size and $(1 - \alpha)\%$ confidence limits.
power	statistical power (1 - β)

Examples

```
power.bcrd4r2(score.obj,
        es = 0.25, rho2 = .20, rho3 = .10, rho4 = .05,
        omega3 = .30, omega4 = .30,
        g4 = 0, r2t4 = 0,
        n1 = 20, n2 = 3, n3 = 20, n4 = 10)
```

```
omega3 = .30, omega4 = .30,
g4 = 0, r2t4 = 0,
n1 = 20, n2 = NULL, n3 = 20, n4 = 10)
```

bcrd4r3

Blocked (Random) Cluster-level Regression Discontinuity (Four-level Design, Discontinuity at Level 3)

Description

Use mdes.bcrd4r3() to calculate minimum detectable effect size, power.bcrd4r3() to calculate statistical power, and cosa.bcrd4r3() for bound constrained optimal sample size allocation (BCOSSA).

Usage

```
mdes.bcrd4r3(score = NULL, dists = "normal", k1 = -6, k2 = 6,
             order = 1, interaction = FALSE,
             treat.lower = TRUE, cutoff = 0, p = NULL,
             power = .80, alpha = .05, two.tailed = TRUE, df = n4 - g4 - 1,
             rho2, rho3, rho4, omega4,
             r21 = 0, r22 = 0, r23 = 0, r2t4 = 0, g4 = 0,
             rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
power.bcrd4r3(score = NULL, dists = "normal", k1 = -6, k2 = 6,
              order = 1, interaction = FALSE,
              treat.lower = TRUE, cutoff = 0, p = NULL,
              es = .25, alpha = .05, two.tailed = TRUE, df = n4 - g4 - 1,
              rho2, rho3, rho4, omega4,
              r21 = 0, r22 = 0, r23 = 0, r2t4 = 0, g4 = 0,
              rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
cosa.bcrd4r3(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
             order = 1, interaction = FALSE,
             treat.lower = TRUE, cutoff = 0, p = NULL,
             cn1 = 0, cn2 = 0, cn3 = 0, cn4 = 0, cost = NULL,
             n1 = NULL, n2 = NULL, n3 = NULL, n4 = NULL,
             n0 = c(10, 3, 100, 5 + g4), p0 = .499,
             constrain = "power", round = TRUE, max.power = FALSE,
             local.solver = c("LBFGS", "SLSQP"),
             power = .80, es = .25, alpha = .05, two.tailed = TRUE,
             rho2, rho3, rho4, omega4,
             g4 = 0, r21 = 0, r22 = 0, r23 = 0, r2t4 = 0)
```

score	vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $k_1 = -6$ and $k_2 = 6$.

k1	left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when $rhots = 0$ or $order = 0$.
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when $rhots = 0$ or $order = 0$.
order	integer ≥ 0 ; order of polynomial functional form specification for the score variable.
interaction	logical; if TRUE polynomial specification interacts with the treatment variable.
rhots	obsolote; use order = 0 to obtain results equivalent to random assignment de- signs.
treat.lower	logical; if TRUE units below the cutoff are treated.
cutoff	decision threshold.
р	proportion of level 3 units in the treatment condition.
power	statistical power (1 - β).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
rho4	proportion of variance in the outcome between level 4 units (unconditional ICC4).
omega4	ratio of the treatment effect variance between level 4 units to the variance in the outcome between level 4 units.
g4	number of covariates at level 4.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
r23	proportion of level 3 variance in the outcome explained by level 3 covariates.
r2t4	proportion of treatment effect variance between level 4 units explained by level 4 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	average number of level 3 units per level 4 unit.
n4	number of level 4 units (blocks).
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. c(10, 5).
cn2	marginal costs per level 2 unit in treatment and control conditions (positional), e.g. c(50, 20).
cn3	marginal costs per level 3 unit in treatment and control conditions (positional), e.g. c(80, 50).

bcrd4r3

cn4	marginal cost per level 4 unit.
cost	total cost or budget. Ignored when constrain = "power" or constrain = "es".
p0	starting value for p when rhots = 0 and p = NULL. Starting value is replaced with the average when p is constrained by bounds.
n0	vector of starting values for n1, n2, n3, n4 (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
round	logical; TRUE for rounded BCOSSA solution.
max.power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".
local.solver	subset of c("LBFGS", "SLSQP").

Value

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	BCOSSA solution.
mdes	minimum detectable effect size and $(1 - \alpha)\%$ confidence limits.
power	statistical power (1 - β)

Examples

power.bcrd4r3(score.obj,

es = 0.25, rho2 = .20, rho3 = .10, rho4 = .05, omega4 = .30, g4 = 0, r2t4 = 0, n1 = 20, n2 = 3, n3 = 20, n4 = 10)

bird2

Blocked (Random) Individual-level Regression Discontinuity (Twolevel Design, Discontinuity at Level 1)

Description

Use mdes.bird2() to calculate minimum detectable effect size, power.bird2() to calculate statistical power, and cosa.bird2() for bound constrained optimal sample size allocation (BCOSSA).

Usage

```
mdes.bird2(score = NULL, dists = "normal", k1 = -6, k2 = 6,
           order = 1, interaction = FALSE,
           treat.lower = TRUE, cutoff = 0, p = NULL,
           power = .80, alpha = .05, two.tailed = TRUE, df = n2 - g2 - 1,
           rho2, omega2, r21 = 0, r2t2 = 0, g2 = 0,
           rate.tp = 1, rate.cc = 0, n1, n2)
power.bird2(score = NULL, dists = "normal", k1 = -6, k2 = 6,
            order = 1, interaction = FALSE,
            treat.lower = TRUE, cutoff = 0, p = NULL,
            es = .25, alpha = .05, two.tailed = TRUE, df = n2 - g2 - 1,
            rho2, omega2, r21 = 0, r2t2 = 0, g2 = 0,
            rate.tp = 1, rate.cc = 0, n1, n2)
cosa.bird2(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
           order = 1, interaction = FALSE,
           treat.lower = TRUE, cutoff = 0, p = NULL,
           cn1 = 0, cn2 = 0, cost = NULL,
           n1 = NULL, n2 = NULL, n0 = c(10, 100), p0 = .499,
           constrain = "power", round = TRUE, max.power = FALSE,
           local.solver = c("LBFGS", "SLSQP"),
           power = .80, es = .25, alpha = .05, two.tailed = TRUE,
           rho2, omega2, g2 = 0, r21 = 0, r2t2 = 0)
```

score	vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $k1 = -6$ and $k2 = 6$.
k1	left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots = 0 or order = 0 .
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots = 0 or order = 0 .

hird	,
u_1u_2	-

order	integer ≥ 0 ; order of polynomial functional form specification for the score
	variable.
interaction	logical; if TRUE polynomial specification interacts with the treatment variable.
rhots	obsolote; use order = 0 to obtain results equivalent to random assignment de- signs.
treat.lower	logical; if TRUE units below the cutoff are treated.
cutoff	decision threshold.
р	proportion of level 1 units in the treatment condition.
power	statistical power $(1 - \beta)$.
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
omega2	ratio of the treatment effect variance between level 2 units to the variance in the outcome between level 2 units.
g2	number of covariates at level 2.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r2t2	proportion of treatment effect variance between level 2 units explained by level 2 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
n1	average number of level 1 units per level 2 units.
n2	number of level 2 units (blocks).
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. c(10, 5).
cn2	marginal cost per level 2 unit.
cost	total cost or budget. Ignored when constrain = "power" or constrain = "es".
p0	starting value for p when rhots = 0 and p = NULL. Starting value is replaced with the average when p is constrained by bounds.
nØ	vector of starting values for n1, n2 (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
round	logical; TRUE for rounded BCOSSA solution.
max.power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".
local.solver	subset of c("LBFGS", "SLSQP")

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	BCOSSA solution.
mdes	minimum detectable effect size and $(1 - \alpha)\%$ confidence limits.
power	statistical power (1 - β)

Examples

```
g_2 = 0, T_2 t_2 = 0,
n1 = NULL, n2 = 30)
```

bird3

Blocked (Random) Individual-level Regression Discontinuity (Threelevel Design, Discontinuity at Level 1)

Description

Use mdes.bird3() to calculate minimum detectable effect size, power.bird3() to calculate statistical power, and cosa.bird3() for bound constrained optimal sample size allocation (BCOSSA).

```
rho2, rho3, omega2, omega3, r21 = 0, r2t2 = 0, r2t3 = 0, g3 = 0,
rate.tp = 1, rate.cc = 0, n1, n2, n3)
cosa.bird3(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
order = 1, interaction = FALSE,
treat.lower = TRUE, cutoff = 0, p = NULL,
cn1 = 0, cn2 = 0, cn3 = 0, cost = NULL,
n1 = NULL, n2 = NULL, n3 = NULL,
n0 = c(10, 3, 100), p0 = .499,
constrain = "power", round = TRUE, max.power = FALSE,
local.solver = c("LBFGS", "SLSQP"),
power = .80, es = .25, alpha = .05, two.tailed = TRUE,
rho2, rho3, omega2, omega3,
g3 = 0, r21 = 0, r2t2 = 0, r2t3 = 0)
```

score	vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $k1 = -6$ and $k2 = 6$.
k1	left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when $rhots = 0$ or $order = 0$.
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when $rhots = 0$ or $order = 0$.
order	integer ≥ 0 ; order of polynomial functional form specification for the score variable.
interaction	logical; if TRUE polynomial specification interacts with the treatment variable.
rhots	obsolote; use order = 0 to obtain results equivalent to random assignment de- signs.
treat.lower	logical; if TRUE units below the cutoff are treated.
cutoff	decision threshold.
р	proportion of level 1 units in the treatment condition.
power	statistical power $(1 - \beta)$.
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
omega2	ratio of the treatment effect variance between level 2 units to the variance in the outcome between level 2 units.

omega3	ratio of the treatment effect variance between level 3 units to the variance in the outcome between level 3 units.	
g3	number of covariates at level 3.	
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.	
r2t2	proportion of treatment effect variance between level 2 units explained by level 2 covariates.	
r2t3	proportion of treatment effect variance between level 3 units explained by level 3 covariates.	
rate.tp	treatment group participation rate.	
rate.cc	control group crossover rate.	
n1	average number of level 1 units per level 2 unit.	
n2	average number of level 2 units (blocks) per level 3 unit.	
n3	number of level 3 units (blocks).	
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. $c(10, 5)$.	
cn2	marginal cost per level 2 unit.	
cn3	marginal cost per level 3 unit.	
cost	total cost or budget. Ignored when constrain = "power" or constrain = "es".	
p0	starting value for p when rhots = \emptyset and p = NULL. Starting value is replaced with the average when p is constrained by bounds.	
n0	vector of starting values for n1, n2, n3 (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.	
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.	
round	logical; TRUE for rounded BCOSSA solution.	
max.power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".	
local.solver	subset of c("LBFGS", "SLSQP")	

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	BCOSSA solution.
mdes	minimum detectable effect size and $(1 - \alpha)\%$ confidence limits.
power	statistical power (1 - β)

bird4

Examples

bird4

Blocked (Random) Individual-level Regression Discontinuity (Fourlevel Design, Discontinuity at Level 1)

Description

Use mdes.bird4() to calculate minimum detectable effect size, power.bird4() to calculate statistical power, and cosa.bird4() for bound constrained optimal sample size allocation (BCOSSA).

```
mdes.bird4(score = NULL, dists = "normal", k1 = -6, k2 = 6,
           order = 1, interaction = FALSE,
           treat.lower = TRUE, cutoff = 0, p = NULL,
           power = .80, alpha = .05, two.tailed = TRUE, df = n4 - g4 - 1,
           rho2, rho3, rho4, omega2, omega3, omega4,
           r21 = 0, r2t2 = 0, r2t3 = 0, r2t4 = 0, g4 = 0,
           rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
power.bird4(score = NULL, dists = "normal", k1 = -6, k2 = 6,
            order = 1, interaction = FALSE,
            treat.lower = TRUE, cutoff = 0, p = NULL,
            es = .25, alpha = .05, two.tailed = TRUE, df = n4 - g4 - 1,
            rho2, rho3, rho4, omega2, omega3, omega4,
            r21 = 0, r2t2 = 0, r2t3 = 0, r2t4 = 0, g4 = 0,
            rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
cosa.bird4(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
           order = 1, interaction = FALSE,
           treat.lower = TRUE, cutoff = 0, p = NULL,
```

```
cn1 = 0, cn2 = 0, cn3 = 0, cn4 = 0, cost = NULL,
n1 = NULL, n2 = NULL, n3 = NULL, n4 = NULL,
n0 = c(10, 3, 100, 5 + g4), p0 = .499,
constrain = "power", round = TRUE, max.power = FALSE,
local.solver = c("LBFGS", "SLSQP"),
power = .80, es = .25, alpha = .05, two.tailed = TRUE,
rho2, rho3, rho4, omega2, omega3, omega4,
g4 = 0, r21 = 0, r2t2 = 0, r2t3 = 0, r2t4 = 0)
```

score	vector or list; an empirical score variable or an object with class 'score' returned
	from the inspect.score() function.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $k1 = -6$ and $k2 = 6$.
k1	left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when $rhots = 0$ or $order = 0$.
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when $rhots = 0$ or $order = 0$.
order	integer ≥ 0 ; order of polynomial functional form specification for the score variable.
interaction	logical; if TRUE polynomial specification interacts with the treatment variable.
rhots	obsolote; use order = 0 to obtain results equivalent to random assignment de- signs.
treat.lower	logical; if TRUE units below the cutoff are treated.
cutoff	decision threshold.
р	proportion of level 1 units in the treatment condition.
power	statistical power (1 - β).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
rho4	proportion of variance in the outcome between level 4 units (unconditional ICC4).
omega2	ratio of the treatment effect variance between level 2 units to the variance in the outcome between level 2 units.
omega3	ratio of the treatment effect variance between level 3 units to the variance in the outcome between level 3 units.
omega4	ratio of the treatment effect variance between level 4 units to the variance in the outcome between level 4 units.

bird4

g4	number of covariates at level 4.	
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.	
r2t2	proportion of treatment effect variance between level 2 units explained by level 2 covariates.	
r2t3	proportion of treatment effect variance between level 3 units explained by level 3 covariates.	
r2t4	proportion of treatment effect variance between level 4 units explained by level 4 covariates.	
rate.tp	treatment group participation rate.	
rate.cc	control group crossover rate.	
n1	average number of level 1 units per level 2 unit.	
n2	average number of level 2 units (blocks) per level 3 unit.	
n3	average number of level 3 units (blcoks) per level 4 unit.	
n4	number of level 4 units (blocks).	
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. $c(10, 5)$.	
cn2	marginal cost per level 2 unit.	
cn3	marginal cost per level 3 unit.	
cn4	marginal cost per level 4 unit.	
cost	total cost or budget. Ignored when constrain = "power" or constrain = "es".	
p0	starting value for p when rhots = 0 and p = NULL. Starting value is replaced with the average when p is constrained by bounds.	
n0	vector of starting values for n1, n2, n3, n4 (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.	
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.	
round	logical; TRUE for rounded BCOSSA solution.	
max.power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".	
local.solver	subset of c("LBFGS", "SLSQP").	

Value

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	BCOSSA solution.
mdes	minimum detectable effect size and $(1 - \alpha)\%$ confidence limits.
power	statistical power (1 - β)

Examples

cosa-deprecated

Deprecated and Defunct functions in cosa

Description

Some function are renamed and depreciated. They may be removed in the future.

Details

Depreciated function names:

- power.crd2r2 is depreciated, use power.crd2 instead.
- mdes.crd2r2 is depreciated, use mdes.crd2 instead.
- cosa.crd2r2 is depreciated, use cosa.crd2 instead.
- power.crd3r3 is depreciated, use power.crd3 instead.
- mdes.crd3r3 is depreciated, use mdes.crd3 instead.
- cosa.crd3r3 is depreciated, use cosa.crd3 instead.
- power.crd4r4 is depreciated, use power.crd4 instead.
- mdes.crd4r4 is depreciated, use mdes.crd4 instead.
- cosa.crd4r4 is depreciated, use cosa.crd4 instead.
- power.ira1r1 is depreciated, use power.ira instead.
- mdes.ira1r1 is depreciated, use mdes.ira instead.
- power.bira2r1 is depreciated, use power.bira2 instead.
- mdes.bira2r1 is depreciated, use mdes.bira2 instead.
- cosa.bira2r1 is depreciated, use cosa.bira2 instead.
- power.bira3r1 is depreciated, use power.bira3 instead.
- mdes.bira3r1 is depreciated, use mdes.bira3 instead.

- cosa.bira3r1 is depreciated, use cosa.bira3 instead.
- power.bira4r1 is depreciated, use power.bira4 instead.
- mdes.bira4r1 is depreciated, use mdes.bira4 instead.
- cosa.bira4r1 is depreciated, use cosa.bira4 instead.

crd2	Cluster-level Regression Discontinuity (Two-level Design, Discontinu-
	ity at Level 2, w/ or w/o Strata or Fixed Blocks)

Description

Use mdes.crd2() to calculate minimum detectable effect size, power.crd2() to calculate statistical power, and cosa.crd2() for bound constrained optimal sample size allocation (BCOSSA). If higher level strata or fixed blocks exist, use mdes.bcrd3f2() to calculate minimum detectable effect size, power.bcrd3f2() to calculate statistical power, and cosa.bcrd3f2() for BCOSSA.

```
mdes.crd2(score = NULL, dists = "normal", k1 = -6, k2 = 6,
          order = 1, interaction = FALSE,
          treat.lower = TRUE, cutoff = 0, p = NULL,
          power = .80, alpha = .05, two.tailed = TRUE,
          df = n2 - g2 - order * (1 + interaction) - 2,
          rho2, r21 = 0, r22 = 0, g2 = 0, rate.tp = 1, rate.cc = 0, n1, n2)
power.crd2(score = NULL, dists = "normal", k1 = -6, k2 = 6,
           order = 1, interaction = FALSE,
           treat.lower = TRUE, cutoff = 0, p = NULL,
           es = .25, alpha = .05, two.tailed = TRUE,
           df = n2 - g2 - order * (1 + interaction) - 2,
           rho2, r21 = 0, r22 = 0, g2 = 0, rate.tp = 1, rate.cc = 0, n1, n2)
cosa.crd2(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
          order = 1, interaction = FALSE,
          treat.lower = TRUE, cutoff = 0, p = NULL,
          cn1 = 0, cn2 = 0, cost = NULL,
          n1 = NULL, n2 = NULL, n0 = c(10, 100), p0 = .499,
          constrain = "power", round = TRUE,
          max.power = FALSE, local.solver = c("LBFGS", "SLSQP"),
          power = .80, es = .25, alpha = .05, two.tailed = TRUE,
          rho2, g2 = 0, r21 = 0, r22 = 0
mdes.bcrd3f2(score = NULL, dists = "normal", k1 = -6, k2 = 6,
             order = 1, interaction = FALSE,
             treat.lower = TRUE, cutoff = 0, p = NULL,
             power = .80, alpha = .05, two.tailed = TRUE,
```

```
df = n3 * (n2 - 2) - g2 - order * (1 + interaction),
             rho2, r21 = 0, r22 = 0, g2 = 0,
             rate.tp = 1, rate.cc = 0, n1, n2, n3)
power.bcrd3f2(score = NULL, dists = "normal", k1 = -6, k2 = 6,
              order = 1, interaction = FALSE,
              treat.lower = TRUE, cutoff = 0, p = NULL,
              es = .25, alpha = .05, two.tailed = TRUE,
              df = n3 * (n2 - 2) - g2 - order * (1 + interaction),
              rho2, r21 = 0, r22 = 0, g2 = 0,
              rate.tp = 1, rate.cc = 0, n1, n2, n3)
cosa.bcrd3f2(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
             order = 1, interaction = FALSE,
             treat.lower = TRUE, cutoff = 0, p = NULL,
             cn1 = 0, cn2 = 0, cn3 = 0, cost = NULL,
             n1 = NULL, n2 = NULL, n3 = NULL,
             n0 = c(10, 100, 5), p0 = .499,
             constrain = "power", round = TRUE, max.power = FALSE,
             local.solver = c("LBFGS", "SLSQP"),
             power = .80, es = .25, alpha = .05, two.tailed = TRUE,
             rho2, g2 = 0, r21 = 0, r22 = 0
```

score	vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $k1 = -6$ and $k2 = 6$.
k1	left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots = 0 or order = 0.
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots = 0 or order = 0.
order	integer $>= 0$; order of polynomial functional form specification for the score variable.
interaction	logical; if TRUE polynomial specification interacts with the treatment variable.
rhots	obsolote; use order = 0 to obtain results equivalent to random assignment designs.
treat.lower	logical; if TRUE units below the cutoff are treated.
cutoff	decision threshold.
р	proportion of level 2 units in the treatment condition.
power	statistical power (1 - β).
es	effect size (Cohen's d).
alpha	probability of type I error (α).

two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
g2	number of covariates at level 2.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
n1	average number of level 1 units per level 2 unit.
n2	number of level 2 units (per stratum or block, if exists).
n3	number of stratum or fixed blocks.
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. c(10, 5).
cn2	marginal costs per level 2 unit in treatment and control conditions (positional), e.g. c(50, 30).
cn3	marginal cost per stratum or fixed block.
cost	total cost or budget. Ignored when constrain = "power" or constrain = "es".
nØ	vector of starting values for n1, n2 or n1, n2, n3 (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.
р0	starting value for p when rhots = 0 or order = 0, and $p = NULL$. Starting value is replaced with the average when p is constrained by bounds.
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
round	logical; TRUE for rounded BCOSSA solution.
max.power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".
local.solver	subset of c("LBFGS", "SLSQP")

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	BCOSSA solution.
mdes	minimum detectable effect size and $(1 - \alpha)\%$ confidence limits.
power	statistical power (1 - β)

Examples

crd3

Cluster-level Regression Discontinuity (Three-level Design, Discontinuity at Level 3, w/ or w/o Strata or Fixed Blocks)

Description

Use mdes.crd3() to calculate minimum detectable effect size, power.crd3() to calculate statistical power, and cosa.crd3() for bound constrained optimal sample size allocation (BCOSSA). If higher level strata or fixed blocks exist, use mdes.bcrd4f3() to calculate minimum detectable effect size, power.bcrd4f3() to calculate statistical power, and cosa.bcrd4f3() for BCOSSA.

```
g_3 = 0, rate.tp = 1, rate.cc = 0, n1, n2, n3)
cosa.crd3(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
          order = 1, interaction = FALSE,
          treat.lower = TRUE, cutoff = 0, p = NULL,
          cn1 = 0, cn2 = 0, cn3 = 0, cost = NULL,
          n1 = NULL, n2 = NULL, n3 = NULL,
          n0 = c(10, 3, 100), p0 = .499,
          constrain = "power", round = TRUE, max.power = FALSE,
          local.solver = c("LBFGS", "SLSQP"),
          power = .80, es = .25, alpha = .05, two.tailed = TRUE,
          rho2, rho3, g3 = 0, r21 = 0, r22 = 0, r23 = 0)
mdes.bcrd4f3(score = NULL, dists = "normal", k1 = -6, k2 = 6,
             order = 1, interaction = FALSE,
             treat.lower = TRUE, cutoff = 0, p = NULL,
             power = .80, alpha = .05, two.tailed = TRUE,
             df = n4 * (n3 - 2) - g3 - order * (1 + interaction),
             rho2, rho3, r21 = 0, r22 = 0, r23 = 0, g3 = 0,
             rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
power.bcrd4f3(score = NULL, dists = "normal", k1 = -6, k2 = 6,
              order = 1, interaction = FALSE,
              treat.lower = TRUE, cutoff = 0, p = NULL,
              es = .25, alpha = .05, two.tailed = TRUE,
              df = n4 * (n3 - 2) - g3 - order * (1 + interaction),
              rho2, rho3, r21 = 0, r22 = 0, r23 = 0, g3 = 0,
              rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
cosa.bcrd4f3(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
             order = 1, interaction = FALSE,
             treat.lower = TRUE, cutoff = 0, p = NULL,
             cn1 = 0, cn2 = 0, cn3 = 0, cn4 = 0, cost = NULL,
             n1 = NULL, n2 = NULL, n3 = NULL, n4 = NULL,
             n0 = c(10, 3, 100 + g3 + order * (1 + interaction), 5), p0 = .499,
             constrain = "power", round = TRUE, max.power = FALSE,
             local.solver = c("LBFGS", "SLSQP"),
             power = .80, es = .25, alpha = .05, two.tailed = TRUE,
             rho2, rho3, g3 = 0, r21 = 0, r22 = 0, r23 = 0)
```

score	vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $k1 = -6$ and $k2 = 6$.
k1	left truncation point for (uncentered) empirical, truncated normal, or uniform

	distribution. Ignored when $rhots = 0$ or $order = 0$.
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when $rhots = 0$ or $order = 0$.
order	integer $>= 0$; order of polynomial functional form specification for the score variable.
interaction	logical; if TRUE polynomial specification interacts with the treatment variable.
rhots	obsolote; use order = 0 to obtain results equivalent to random assignment de- signs.
treat.lower	logical; if TRUE units below the cutoff are treated.
cutoff	decision threshold.
р	proportion of level 3 units in the treatment condition.
power	statistical power (1 - β).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
g3	number of covariates at level 3.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
r23	proportion of level 3 variance in the outcome explained by level 3 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	number of level 3 units(per stratum or block, if exists).
n4	number of stratum or fixed blocks.
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. c(10, 5).
cn2	marginal costs per level 2 unit in treatment and control conditions (positional), e.g. c(50, 30).
cn3	marginal costs per level 3 unit in treatment and control conditions (positional), e.g. c(80, 50).
cn4	marginal cost per stratum or fixed block.
cost	total cost or budget. Ignored when constrain = "power" or constrain = "es".
pØ	starting value for p when rhots = 0 and p = NULL. Starting value is replaced with the average when p is constrained by bounds.

nØ	vector of starting values for n1, n2, n3 or n1, n2, n3, n4 (positional). Start- ing values are replaced with the averages when sample sizes are constrained by bounds.
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
round	logical; TRUE for rounded BCOSSA solution.
max.power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".
local.solver	subset of c("LBFGS", "SLSQP")

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	BCOSSA solution.
mdes	minimum detectable effect size and $(1 - \alpha)\%$ confidence limits.
power	statistical power (1 - β)

Examples

```
score.obj <- inspect.score(rnorm(1000),</pre>
                           order = 1, interaction = FALSE,
                           cutoff = 0, k1 = -1, k2 = 1)
# single site (no blocks)
power.crd3(score.obj,
           es = .25, rho2 = .20, rho3 = .10,
           g3 = 0, r23 = 0, n1 = 20, n2 = 3, n3 = 40)
# with 5 blocks (note that r23 is modified but g3 remains the same)
power.bcrd4f3(score.obj,
              es = .25, rho2 = .20, rho3 = .10,
              g3 = 0, r23 = .30,
              n1 = 20, n2 = 3, n3 = 40, n4 = 5)
# minimum required number of level 3 units for each block
cosa.bcrd4f3(score.obj,
             es = .25, rho2 = .20, rho3 = .10,
             g3 = 0, r23 = .30,
             n1 = 20, n2 = 2, n3 = NULL, n4 = 5)
```

crd4

Cluster-level Regression Discontinuity (Four-level Design, Discontinuity at Level 4)

Description

Use mdes.crd4() to calculate minimum detectable effect size, power.crd4() to calculate statistical power, and cosa.crd4() for bound constrained optimal sample size allocation (BCOSSA).

Usage

```
mdes.crd4(score = NULL, dists = "normal", k1 = -6, k2 = 6,
          order = 1, interaction = FALSE,
          treat.lower = TRUE, cutoff = 0, p = NULL,
          power = .80, alpha = .05, two.tailed = TRUE,
          df = n4 - g4 - order * (1 + interaction) - 2,
          rho2, rho3, rho4, r21 = 0, r22 = 0, r23 = 0, r24 = 0,
          g4 = 0, rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
power.crd4(score = NULL, dists = "normal", k1 = -6, k2 = 6,
           order = 1, interaction = FALSE,
           treat.lower = TRUE, cutoff = 0, p = NULL,
           es = .25, alpha = .05, two.tailed = TRUE,
           df = n4 - g4 - order * (1 + interaction) - 2,
           rho2, rho3, rho4, r21 = 0, r22 = 0, r23 = 0, r24 = 0,
           g4 = 0, rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
cosa.crd4(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
          order = 1, interaction = FALSE,
          treat.lower = TRUE, cutoff = 0, p = NULL,
          cn1 = 0, cn2 = 0, cn3 = 0, cn4 = 0, cost = NULL,
          n1 = NULL, n2 = NULL, n3 = NULL, n4 = NULL,
          n0 = c(10, 3, 100, 5 + g4 + order * (1 + interaction)), p0 = .499,
          constrain = "power", round = TRUE, max.power = FALSE,
          local.solver = c("LBFGS", "SLSQP"),
          power = .80, es = .25, alpha = .05, two.tailed = TRUE,
          rho2, rho3, rho4, g4 = 0, r21 = 0, r22 = 0, r23 = 0, r24 = 0)
```

score	vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $k1 = -6$ and $k2 = 6$.
k1	left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots = 0 or order = 0 .
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots = 0 or order = 0 .
order	integer $>= 0$; order of polynomial functional form specification for the score variable.
interaction	logical; if TRUE polynomial specification interacts with the treatment variable.

crd4

rhots	obsolote; use order = 0 to obtain results equivalent to random assignment designs.
treat.lower	logical; if TRUE units below the cutoff are treated.
cutoff	decision threshold.
р	proportion of level 4 units in the treatment condition.
power	statistical power (1 - β).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
rho4	proportion of variance in the outcome between level 4 units (unconditional ICC4).
g4	number of covariates at level 4.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
r23	proportion of level 3 variance in the outcome explained by level 3 covariates.
r24	proportion of level 4 variance in the outcome explained by level 4 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	average number of level 3 units per level 4 unit.
n4	number of level 4 units.
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. c(10, 5).
cn2	marginal costs per level 2 unit in treatment and control conditions (positional), e.g. c(50, 30).
cn3	marginal costs per level 3 unit in treatment and control conditions (positional), e.g. c(80, 50).
cn4	marginal costs per level 4 unit in treatment and control conditions (positional), e.g. c(100, 40).
cost	total cost or budget. Ignored when constrain = "power" or constrain = "es".
p0	starting value for p when rhots = 0 and p = NULL. Starting value is replaced with the average when p is constrained by bounds.
n0	vector of starting values for n1, n2, n3, n4 (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
round	logical; TRUE for rounded BCOSSA solution.
max.power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".
local.solver	subset of c("LBFGS", "SLSQP").

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	BCOSSA solution.
mdes	minimum detectable effect size and $(1 - \alpha)\%$ confidence limits.
power	statistical power (1 - β)

Examples

```
es = .25, rho2 = .20, rho3 = .10, rho4 = .05,
g4 = 0, r24 = 0, n1 = 20, n2 = 3, n3 = 50, n4 = 20)
```

```
inspect.score Computes Regression Discontinuity Design Effects
```

Description

Computes Regression Discontinuity Design Effects (RDDE) either based on analytic deviations (up to second order with interactions), an empirical score variable, or simulation.

Usage

sim	logical; if TRUE results are based on simulation.
score	vector; score variable.
р	proportion of units in the treatment condition.
cutoff	decision threshold.

inspect.score

treat.lower	logical; if TRUE units below cutoff are treated.
order	integer ≥ 0 ; order of polynomial functional form specification for the score variable.
interaction	logical; if TRUE polynomial specification interacts with the treatment variable.
mu	<pre>mean of (uncentered) truncated normal - applies when score = NULL and dists = "normal".</pre>
sigma	standard deviation of (uncentered) truncated normal - applies when score = NULL and dists = "normal".
k1	left truncation point for (uncentered) empirical, truncated normal, or uniform distribution.
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution.
dists	char; type of distribution, "normal" or "uniform".
ndraw	number of draws - applies when sim = TRUE.
nsim	number of simulations - applies when sim = TRUE.

Value

parms	list; list of parameters used in the computation.
cutoff	decision threshold (computed if p is provided).
treat.lower	if TRUE units below cutoff are treated.
р	proportion of subjects treated (computed if cutoff is provided).
order	order of polynomial specification for the score variable.
interaction	if TRUE polynomial specification interacts with the treatment variable.
center	if TRUE the score variable is centered on the cutoff
rdde	regression discontinuity design effect.

Examples

```
# based on an empirical score variable
inspect.score(score = rnorm(10000), cutoff = 0)
# based on analytic derivation
inspect.score(cutoff = 0)
# based on simulation
inspect.score(sim = TRUE, cutoff = 0)
```

Simple Individual-level Regression Discontinuity (w/ or w/o Strata or Fixed Blocks)

Description

Use mdes.ird() to calculate minimum detectable effect size and power.ird() to calculate statistical power. If higher level strata or fixed blocks exist, use mdes.bird2f1() to calculate minimum detectable effect size, power.bird2f1() to calculate statistical power, and cosa.bird2f1() for bound constrained optimal sample size allocation (BCOSSA).

Usage

mdes.ird(score = NULL, dists = "normal", k1 = -6, k2 = 6, order = 1, interaction = FALSE, treat.lower = TRUE, cutoff = 0, p = NULL, power = .80, alpha = .05, two.tailed = TRUE, df = n1 - g1 - order * (1 + interaction) - 2,r21 = 0, g1 = 0, rate.tp = 1, rate.cc = 0, n1) power.ird(score = NULL, dists = "normal", k1 = -6, k2 = 6, order = 1, interaction = FALSE, treat.lower = TRUE, cutoff = 0, p = NULL, es = .25, alpha = .05, two.tailed = TRUE, df = n1 - g1 - order * (1 + interaction) - 2,r21 = 0, g1 = 0, rate.tp = 1, rate.cc = 0, n1) mdes.bird2f1(score = NULL, dists = "normal", k1 = -6, k2 = 6, order = 1, interaction = FALSE, treat.lower = TRUE, cutoff = 0, p = NULL, power = .80, alpha = .05, two.tailed = TRUE, df = n2 * (n1 - 2) - g1 - order * (1 + interaction),r21 = 0, g1 = 0, rate.tp = 1, rate.cc = 0, n1, n2 = 1) power.bird2f1(score = NULL, dists = "normal", k1 = -6, k2 = 6, order = 1, interaction = FALSE, treat.lower = TRUE, cutoff = 0, p = NULL, es = .25, alpha = .05, two.tailed = TRUE, df = n2 * (n1 - 2) - g1 - order * (1 + interaction),r21 = 0, g1 = 0, rate.tp = 1, rate.cc = 0, n1, n2 = 1) cosa.bird2f1(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL, order = 1, interaction = FALSE, treat.lower = TRUE, cutoff = 0, p = NULL, cn1 = 0, cn2 = 0, cost = NULL, n1 = NULL, n2 = NULL,n0 = c(400, 5), p0 = .499,

ird

```
constrain = "power", round = TRUE, max.power = FALSE,
local.solver = c("LBFGS", "SLSQP"),
power = .80, es = .25, alpha = .05, two.tailed = TRUE,
g1 = 0, r21 = 0)
```

score	vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $k1 = -6$ and $k2 = 6$.
k1	left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots = 0 or order = 0.
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots = 0 or order = 0.
order	integer $>= 0$; order of polynomial functional form specification for the score variable.
interaction	logical; if TRUE polynomial specification interacts with the treatment variable.
rhots	obsolote; use order = 0 to obtain results equivalent to random assignment de- signs.
treat.lower	logical; if TRUE units below cutoff the are treated.
cutoff	decision threshold.
р	proportion of units in the treatment condition.
power	statistical power (1 - β).
es	numeric > 0; effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
g1	number of covariates.
r21	proportion of variance in the outcome explained by covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
n1	sample size (per stratum or block, if exists).
n2	number of stratum or fixed blocks.
cn1	marginal cost per unit in treatment and control conditions, e.g. c(10, 5).
cn2	marginal cost per stratum or fixed block.
cost	total cost or budget. Ignored when constrain = "power" or constrain = "es".
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
nØ	starting value for n1 or n1, n2. Starting value is replaced with the average when sample size is constrained by bounds.

p0	starting value for p when rhots = 0 and p = NULL. Starting value is replaced with average when p is constrained by bounds.
round	logical; TRUE for rounded BCOSSA solution.
max.power	<pre>logical; TRUE for maximizing power instead of minimizing variance, applies when constrain = "cost"</pre>
local.solver	subset of c("LBFGS", "SLSQP")

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	BCOSSA solution.
mdes	minimum detectable effect size and $(1 - \alpha)\%$ confidence limits.
power	statistical power (1 - β)

Examples

moments

Moments

Description

If data (vector) is provided use emp.moment() function, otherwise for truncated normal distribution use tnorm.moment(), and for uniform distribution use unif.moment().

```
tnorm.moment(mu = 0, sigma = 1, k1 = -Inf, k2 = Inf, order = 1, central = FALSE)
unif.moment(k1 = 0, k2 = 1, order = 1, central = FALSE)
emp.moment(x, order = 1, central = FALSE, absolute = FALSE, na.rm = FALSE)
```

plot

Arguments

mu	mean of truncated normal - applies to tnorm.moment().
sigma	standard deviation of truncated normal - applies to tnorm.moment().
k1	left truncation point for truncated normal distribution or lower bound for uni- form distribution.
k2	right truncation point for truncated normal distribution or upper bound for uni- form distribution.
order	+ int; order of moment
x	a vector of values - applies to emp.moment().
central	logical; if TRUE produces central moments.
absolute	logical; if TRUE produces absolute moments - applies to emp.moment().
na.rm	logical; if TRUE removes missing values - applies to emp.moment().

Examples

tnorm.moment(k1 = -20, k2 = 20, order = 4, central = FALSE)
emp.moment(rnorm(10000), order = 4, central = FALSE)
unif.moment(k1 = 0, k2 = 1, order = 4, central = FALSE)
emp.moment(runif(10000), order = 4, central = FALSE)

plot

Power and MDES Curves

Description

Plots statistical power or minimum detectable effect size curves with $(1-\alpha)x100$ % confidence interval for the design of interest.

х	an object returned from functions in cosa package.
score	vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
ypar	character; "mdes" or "power" on y axis.
xpar	character; one of the sample sizes on x axis.
xlim	limits for xpar.
ylim	limits for ypar.
xlab	x axis label.
ylab	y axis label.
main	title for the plot.
sub	subtitle for the plot.
locate	logical; TRUE locates parameter values for design x on the plot.
benchmark	benchmark line.
	other graphical parameters to pass to plot.new().

Examples

Vectorize BCOSSA Vectorizes BCOSSA Solutions

Description

Vectorizes bound constrained optimal sample size allocation (BCOSSA) solutions based on multiple sets of parameter values. This is particularly useful when multiple values of design parameters are to be considered.

Usage

36

х	an object returned from one of the cosa. <design>() functions.</design>
score	vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
args.grid	vector or matrix: arguments' grid consisting of sets of parameter values. A vector of values (for a single parameter) or a matrix (for multiple parameters).
args.names	character list; arguments' names. Default option args.names = NULL uses col- umn names from args.grid
ordered	logical: whether results should be ordered (cases with worst power rate or high- est total cost are on top).
ncase	integer: number of cases to be subsetted, ignored if ordered = FALSE.

Examples

Index

bcrd3f2 (crd2), 21 bcrd3r2, 3 bcrd4f3 (crd3), 24 bcrd4r2, 6 bcrd4r3, 9 bird2, 12 bird2f1 (ird), 32 bird2r1 (bird2), 12 bird3, 14 bird3r1 (bird3), 14 bird4, 17 bird4r1 (bird4), 17

```
cosa-deprecated, 20
cosa-package, 2
cosa.bcrd3f2(crd2), 21
cosa.bcrd3r2(bcrd3r2), 3
cosa.bcrd4f3 (crd3), 24
cosa.bcrd4r2 (bcrd4r2), 6
cosa.bcrd4r3 (bcrd4r3), 9
cosa.bird2(bird2), 12
cosa.bird2f1(ird), 32
cosa.bird2r1 (bird2), 12
cosa.bird3(bird3), 14
cosa.bird3r1 (bird3), 14
cosa.bird4 (bird4), 17
cosa.bird4r1 (bird4), 17
cosa.crd2 (crd2), 21
cosa.crd2r2 (crd2), 21
cosa.crd3 (crd3), 24
cosa.crd3r3 (crd3), 24
cosa.crd4 (crd4), 27
cosa.crd4r4 (crd4), 27
crd2, 21
crd2r2 (crd2), 21
crd3, 24
crd3r3 (crd3), 24
crd4, 27
crd4r4 (crd4), 27
```

emp.moment (moments), 34 inspect.score, 30ird, 32 ird1r1(ird), 32 mdes.bcrd3f2(crd2), 21 mdes.bcrd3r2(bcrd3r2), 3 mdes.bcrd4f3(crd3), 24 mdes.bcrd4r2(bcrd4r2), 6 mdes.bcrd4r3(bcrd4r3), 9 mdes.bird2(bird2), 12 mdes.bird2f1(ird), 32 mdes.bird2r1 (bird2), 12 mdes.bird3(bird3), 14 mdes.bird3r1 (bird3), 14 mdes.bird4 (bird4), 17 mdes.bird4r1 (bird4), 17 mdes.crd2(crd2), 21 mdes.crd2r2 (crd2), 21 mdes.crd3 (crd3), 24 mdes.crd3r3 (crd3), 24 mdes.crd4 (crd4), 27 mdes.crd4r4 (crd4), 27 mdes.ird(ird), 32 mdes.ird1r1(ird), 32 moments, 34

plot, 35

power.bcrd3f2(crd2), 21 power.bcrd3f2(bcrd3r2), 3 power.bcrd4f3(crd3), 24 power.bcrd4f3(crd3), 24 power.bcrd4f3(bcrd4r2), 6 power.bcrd4f3(bcrd4r3), 9 power.bird2(bird2), 12 power.bird2f1(ird), 32 power.bird2f1(bird2), 12 power.bird3f1(bird3), 14 power.bird3f1(bird3), 14 power.bird4(bird4), 17

INDEX

power.bird4r1(bird4), 17
power.crd2(crd2), 21
power.crd2r2(crd2), 21
power.crd3(crd3), 24
power.crd3r3(crd3), 24
power.crd4(crd4), 27
power.crd4r4(crd4), 27
power.ird(ird), 32
power.ird1r1(ird), 32

tnorm.moment(moments), 34

unif.moment(moments), 34

Vectorize BCOSSA, 36 vectorize.cosa(Vectorize BCOSSA), 36