Package: PowerUpR 1.1.0
PowerUpR: Power Analysis Tools for Multilevel Randomized Experiments
Includes tools to calculate statistical power, minimum detectable effect size (MDES), MDES difference (MDESD), and minimum required sample size for various multilevel randomized experiments with continuous outcomes. Some of the functions can assist with planning multilevel randomized experiments sensetive to detect multilevel moderation (2-1-1, 2-1-2, 2-2-1, and 2-2-2 designs) and multilevel mediation (2-1-1, 2-2-1, 3-1-1, 3-2-1, and 3-3-1 designs). See 'PowerUp!' Excel series at <https://www.causalevaluation.org/>.
Authors:
PowerUpR_1.1.0.tar.gz
PowerUpR_1.1.0.zip(r-4.5)PowerUpR_1.1.0.zip(r-4.4)PowerUpR_1.1.0.zip(r-4.3)
PowerUpR_1.1.0.tgz(r-4.4-any)PowerUpR_1.1.0.tgz(r-4.3-any)
PowerUpR_1.1.0.tar.gz(r-4.5-noble)PowerUpR_1.1.0.tar.gz(r-4.4-noble)
PowerUpR_1.1.0.tgz(r-4.4-emscripten)PowerUpR_1.1.0.tgz(r-4.3-emscripten)
PowerUpR.pdf |PowerUpR.html✨
PowerUpR/json (API)
NEWS
# Install 'PowerUpR' in R: |
install.packages('PowerUpR', repos = c('https://metinbulus.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/metinbulus/powerupr/issues
Last updated 3 years agofrom:5580f7ea84. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win | NOTE | Nov 05 2024 |
R-4.5-linux | NOTE | Nov 05 2024 |
R-4.4-win | NOTE | Nov 05 2024 |
R-4.4-mac | NOTE | Nov 05 2024 |
R-4.3-win | NOTE | Nov 05 2024 |
R-4.3-mac | NOTE | Nov 05 2024 |
Exports:mdes.bcra3f2mdes.bcra3r2mdes.bcra3r2_pnmdes.bcra4f3mdes.bcra4r2mdes.bcra4r3mdes.bira2mdes.bira2_pnmdes.bira2c1mdes.bira2f1mdes.bira2r1mdes.bira3mdes.bira3r1mdes.bira4mdes.bira4r1mdes.cra2mdes.cra2_pnmdes.cra2r2mdes.cra3mdes.cra3r3mdes.cra4mdes.cra4r4mdes.iramdes.ira_pnmdes.ira1r1mdes.mod211mdes.mod212mdes.mod221mdes.mod222mdes.mod331mdes.mod332mdes.mod333mdes.to.pctlmdes.to.powermdesd.mod211mdesd.mod212mdesd.mod221mdesd.mod222mdesd.mod331mdesd.mod332mdesd.mod333mdh.repmrns.repmrss.bcra3f2mrss.bcra3r2mrss.bcra3r2_pnmrss.bcra4f3mrss.bcra4r2mrss.bcra4r3mrss.bira2mrss.bira2_pnmrss.bira2c1mrss.bira2f1mrss.bira2r1mrss.bira3mrss.bira3r1mrss.bira4mrss.bira4r1mrss.cra2mrss.cra2_pnmrss.cra2r2mrss.cra3mrss.cra3r3mrss.cra4mrss.cra4r4mrss.iramrss.ira_pnmrss.ira1r1mrss.mod211mrss.mod212mrss.mod221mrss.mod222mrss.mod331mrss.mod332mrss.mod333mrss.to.mdesmrss.to.powerplot.mdesplot.mrssplot.powerpower.bcra3f2power.bcra3r2power.bcra3r2_pnpower.bcra4f3power.bcra4r2power.bcra4r3power.bira2power.bira2_pnpower.bira2c1power.bira2f1power.bira2r1power.bira3power.bira3r1power.bira4power.bira4r1power.cra2power.cra2_pnpower.cra2r2power.cra3power.cra3r3power.cra4power.cra4r4power.irapower.ira_pnpower.ira1r1power.med_pn21power.med_pn31power.med_pn32power.med211power.med221power.med311power.med321power.med331power.mod211power.mod212power.mod221power.mod222power.mod331power.mod332power.mod333power.reppower.to.mdest1t2.error
Dependencies:
Planning a Three-Level Cluster Randomized Trial Sensitive to Detect Main Treatment Effect
Rendered fromthree_level_cluster_randomized_trial.Rmd
usingknitr::rmarkdown
on Nov 05 2024.Last update: 2020-04-04
Started: 2020-04-04
Vectorization of Functions to Create Plots and Tables
Rendered fromvectorization_over_arbitary_parameters.rmd
usingknitr::rmarkdown
on Nov 05 2024.Last update: 2021-04-08
Started: 2021-03-31
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Power Analysis Tools for Multilevel Randomized Experiments | PowerUpR-package PowerUpR |
Three-Level Blocked Cluster-level Random Assignment Design, Treatment at Level 2 | bcra3r2 bcra3r2_pn mdes.bcra3r2 mdes.bcra3r2_pn mrss.bcra3r2 mrss.bcra3r2_pn power.bcra3r2 power.bcra3r2_pn |
Four-Level Blocked Cluster-level Random Assignment Design, Treatment at Level 2 | bcra4r2 mdes.bcra4r2 mrss.bcra4r2 power.bcra4r2 |
Four-Level Blocked Cluster-level Random Assignment Design, Treatment at Level 3 | bcra4r3 mdes.bcra4r3 mrss.bcra4r3 power.bcra4r3 |
Two-Level Blocked Individual-level Random Assignment Design | bira2 bira2r1 bira2_pn mdes.bira2 mdes.bira2r1 mdes.bira2_pn mdes.mod211 mdes.mod212 mdesd.mod211 mdesd.mod212 mrss.bira2 mrss.bira2r1 mrss.bira2_pn mrss.mod211 mrss.mod212 power.bira2 power.bira2r1 power.bira2_pn power.mod211 power.mod212 |
Three-Level Blocked Individual-level Random Assignment Design | bira3 bira3r1 mdes.bira3 mdes.bira3r1 mrss.bira3 mrss.bira3r1 power.bira3 power.bira3r1 |
Four-Level Blocked Individual-level Random Assignment Design | bira4 bira4r1 mdes.bira4 mdes.bira4r1 mrss.bira4 mrss.bira4r1 power.bira4 power.bira4r1 |
Object Conversion | mdes.to.pctl mdes.to.power mrss.to.mdes mrss.to.power power.to.mdes |
Two-level Cluster-randomized Trials to Detect Main, Moderation and Mediation Effects | bcra3f2 cra2 cra2r2 cra2_pn mdes.bcra3f2 mdes.cra2 mdes.cra2r2 mdes.cra2_pn mdes.mod221 mdes.mod222 mdesd.mod221 mdesd.mod222 mrss.bcra3f2 mrss.cra2 mrss.cra2r2 mrss.cra2_pn mrss.mod221 mrss.mod222 power.bcra3f2 power.cra2 power.cra2r2 power.cra2_pn power.med211 power.med221 power.mod221 power.mod222 |
Three-level Cluster-randomized Trials to Detect Main, Moderation, and Mediation Effects | bcra4f3 cra3 cra3r3 mdes.bcra4f3 mdes.cra3 mdes.cra3r3 mdes.mod331 mdes.mod332 mdes.mod333 mdesd.mod331 mdesd.mod332 mdesd.mod333 mrss.bcra4f3 mrss.cra3 mrss.cra3r3 mrss.mod331 mrss.mod332 mrss.mod333 power.bcra4f3 power.cra3 power.cra3r3 power.med311 power.med321 power.med331 power.mod331 power.mod332 power.mod333 |
Four-Level Cluster-randomized Trial | cra4 cra4r4 mdes.cra4 mdes.cra4r4 mrss.cra4 mrss.cra4r4 power.cra4 power.cra4r4 |
Individual-level Random Assignment Designs | bira2c1 bira2f1 ira ira1r1 ira_pn mdes.bira2c1 mdes.bira2f1 mdes.ira mdes.ira1r1 mdes.ira_pn mrss.bira2c1 mrss.bira2f1 mrss.ira mrss.ira1r1 mrss.ira_pn power.bira2c1 power.bira2f1 power.ira power.ira1r1 power.ira_pn |
Partially Nested Designs Probing Multilevel Mediation | med_pn med_pn21 med_pn31 med_pn32 power.med_pn21 power.med_pn31 power.med_pn32 |
Plots | plot.mdes plot.mrss plot.power |
Unambiguous Test of Replication for Ensemble of Studies | mdh mdh.rep mrns.rep power.rep q.test rep replication |
Plots Type I and Type II Error Rates | t1t2.error |